

Directions:

* Show your thought process (commonly said as "show your work") when solving each problem for full credit.
* If you do not know how to solve a problem, try your best and/or explain in English what you would do.
* Good luck!

| Problem | Score |
| :---: | :---: | Points | 1 | 10 |
| :---: | :---: |
| 2 | 10 |
| 3 | 10 |
| 4 | 10 |
| 5 | 10 |

50

1. If

$$
f(x)=1-x^{2} \quad g(x)=4 x^{3}-2 x^{2}+1 \quad h(x)=\cos (x) \quad j(x)=\frac{1}{x}
$$

Evaluate, expand, and/or simplify the following:
(a) $h\left(\frac{13 \pi}{6}\right)=\cos \left(\frac{13 \pi}{6}\right)=\cos \left(2 \pi+\frac{\pi}{6}\right)=\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$
(b) $j(1) \cdot h(0)=\frac{1}{1} \cdot \cos (0)=1 \cdot 1=1$

$$
\text { (c) } \begin{aligned}
f(x) \cdot g(x) & =\left(1-x^{2}\right) \cdot\left(4 x^{3}-2 x^{2}+1\right) \\
& =4 x^{3}-2 x^{2}+1-x^{2}\left(4 x^{3}-2 x^{2}+1\right) \quad \text { dist law } \\
& =4 x^{3}-2 x^{2}+1-4 x^{5}+2 x^{4}-x^{2} \quad \text { dist law } \\
& =-4 x^{5}+2 x^{4}+4 x^{3}-3 x^{2}+1
\end{aligned}
$$

2. Short answer questions:
(a) Write down the definition of the symbols $\lim _{x \rightarrow a} f(x)=L$. As x approaches a, the heights $f(x)$ can be made as close as you want to L.
(b) True or false: We can simplify

$$
\frac{(x+1)(x-2)-(x-1)(x+2)}{(x+1)^{2}(x-2)-(x-1)(x+2)}
$$

by crossing out the $x+1$.

$$
\text { False. }(x+1) \text { is not a global factor. }
$$

(c) If $f(x)=2 x^{2}$, evaluate $f(x+h)$ and fully expand + simplify.

$$
\begin{aligned}
f(x+h)=2(x+h)^{2} & =2\left(x^{2}+2 x h+h^{2}\right) \\
& =2 x^{2}+4 x h+2 h^{2}
\end{aligned}
$$

(d) If $F(x)=\sqrt[3]{\sin \left(x^{5}\right)}$ find three functions f, g, h where $f \circ g \circ h=F$.

$$
\begin{aligned}
& f(x)=\sqrt[3]{x} \\
& g(x)=\sin (x) \\
& h(x)=x^{5}
\end{aligned}
$$

3. Suppose

$$
f(x)= \begin{cases}x+2 & x \leq-1 \\ x^{2} & x>-1\end{cases}
$$

(a) What is $f(-1)$?

$$
f(-1)=-1+2=1
$$

(b) Sketch a graph of $f(x)$.
plug in -1 into x^{2} to get $(-1)^{2}=1$ So $(-1,1)$ is on

x	$f(x)$
-3	$-3+2=-1$

-2	$-2+2=0$
-1	$-1+2=1$

$$
0^{2}=0
$$

$$
1^{2}=1
$$

$2 \quad 2^{2}=4$

open circle showing whric the graph of x starts.
(c) Does $\lim _{x \rightarrow-1} f(x)$ exist? If it does, find the limit. If not, explain why. Yes, from the graph

$$
\lim _{x \rightarrow-1^{-}} f(x)=1=\lim _{x \rightarrow-1^{+}} f(x)
$$

So $\left(\lim _{x \rightarrow-1} f(x)=1\right.$
4. Perform the given instruction. Remember to use the relevant laws/properties and fully simplify.
(a) Find the limit and simplify:

$$
\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h}
$$

Limit laws give $\frac{0}{0} \quad \lim _{h \rightarrow 0}$ says create global factor of h and
cancel. Denominator already has h. Fucus on numerator as a pre-cale problem.

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h} & =\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}-9}{h} \quad(A+B)^{2} \\
& =\lim _{h \rightarrow 0} \frac{6 h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(6+h)}{h} \quad G C F \\
& =\lim _{h \rightarrow 0}[6+h] \\
& =6
\end{aligned}
$$

(b) Find the limit and simplify:

$$
\lim _{x \rightarrow 9} \frac{3-\sqrt{x}}{9 x-x^{2}}
$$

Try limit laws, yo will get $\frac{0}{0}$.
Rationalize numenter:

Stop forgetting parentheses. Ix oud x^{2} are two terms. These two terms an being

$$
\begin{aligned}
& \text { multiplied. } \\
& A-B \quad A+B \\
& \lim _{x \rightarrow 9} \frac{3-\sqrt{x}}{9 x-x^{2}} \cdot \frac{3+\sqrt{x}}{3+\sqrt{x}}=\lim _{x \rightarrow 9} \frac{9-x}{\left(9 x-x^{2}\right)(3+\sqrt{x})} \\
& =\lim _{x \rightarrow 9} \frac{(2-x)}{x(2-x)(3+\sqrt{x})} \quad G C F \\
& =\lim _{x \rightarrow 9} \frac{1}{x(3+\sqrt{x})} \\
& =\frac{\lim _{x \rightarrow 9} 1}{\left[\lim _{x \rightarrow 9} x\right] \cdot\left[\lim _{x \rightarrow 1} 3+\sqrt{\lim _{x \rightarrow 1} x}\right]} \\
& =\frac{1}{9 \cdot(3+\sqrt{1})} \\
& =\frac{1}{9 \cdot 6} \\
& =\frac{1}{54}
\end{aligned}
$$

(c) Simplify: $\frac{\frac{1}{x+h}-\frac{1}{x}}{h} \longleftarrow$ deal with numionter as a subproblem!
missing factor of $(x+h)$
missing factor of x

$$
\begin{aligned}
\rightarrow \frac{1}{(x+h)}-\frac{1}{x} & =\frac{\frac{x}{x} \cdot \frac{1}{(x+h)}-\frac{1}{x} \cdot \frac{x+h}{x+h}}{h} \\
& =\frac{\frac{x}{x(x+h)}-\frac{x+h}{x(x+h)}}{h} \\
& =\frac{\frac{x-(x+h)}{x(x+h)}}{h}=\text { fraction law } 3 \\
& =\frac{\frac{x-x-h}{x(x+h)}}{h}=\frac{-h}{x(x+h)}
\end{aligned}
$$

(d) Expand and simplify: $3(x-1)^{2}-(x+2)(x-3) 2 x$

Two global terms, each of which are subproblem

$$
\begin{aligned}
3(x-1)^{2}-(x+2)(x-3) 2 x & =3\left(x^{2}-2 x+1\right)-2 x\left(x^{2}-x^{2}-6\right) \\
& =3 x^{2}-6 x+3-2 x^{3}+2 x^{2}+12 x \text { dinmutative law } \\
& =-2 x^{3}+5 x^{2}+6 x+3
\end{aligned}
$$

5. Draw the graph of a function which satisfies the following:
(a) $f(-2)=2$
(b) $f(2)=-2$
(c) $\lim _{x \rightarrow 2} f(x)=1$
(d) $\lim _{x \rightarrow-2^{-}} f(x)=0$
(e) $\lim _{x \rightarrow-2^{+}} f(x)=1$
(f) $\lim _{x \rightarrow 0} f(x)=\infty$

